By Topic

A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Chatterjee ; Dept. of Adv. Syst. Control Eng., Saga Univ., Japan ; K. Pulasinghe ; K. Watanabe ; K. Izumi

This paper shows the possible development of particle swarm optimization (PSO)-based fuzzy-neural networks (FNNs) that can be employed as an important building block in real robot systems, controlled by voice-based commands. The PSO is employed to train the FNNs that can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands, issued by a user. The FNN is also trained to capture the user-spoken directive in the context of the present performance of the robot system. Hidden Markov model (HMM)-based automatic speech recognizers (ASRs) are developed, as part of the entire system, so that the system can identify important user directives from the running utterances. The system has been successfully employed in two real-life situations, namely: 1) for navigation of a mobile robot; and 2) for motion control of a redundant manipulator.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:52 ,  Issue: 6 )