By Topic

Design and integration of novel SCR-based devices for ESD protection in CMOS/BiCMOS technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salcedo, J.A. ; Dept. of Electr. & Comput. Eng., Univ. of Central Florida, Orlando, FL, USA ; Liou, J.J. ; Bernier, J.C.

Robust and novel devices called high-holding low-voltage trigger silicon controlled rectifiers (HH-LVTSCRs) for electrostatic discharge (ESD) protection of integrated circuits (ICs) are designed, fabricated and characterized. The S-type current-voltage (I-V) characteristics of the HH-LVTSCRs are adjustable to different operating conditions by changing the device dimensions and terminal interconnections. Comparison between complementary n- and p-type HH-LVTSCR devices shows that n-type devices perform better than p-type devices when a low holding voltage (VH) is allowed during the on-state of the ESD protection structure, but when a relatively high holding voltage is required, p-type devices perform better. Results further demonstrate that HH-LVTSCRs with a multiple-finger layout render high levels of ESD protection per unit area, applicable in the design of ICs with stringent ESD protection requirements of over 15 kV IEC.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 12 )