By Topic

Process and design tradeoffs between minimum RC signal propagation delay and interconnect current density and resistance for deep submicrometer ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Inohara, M. ; Syst. LSI Div., Toshiba Corp., Hopewell Junction, NY, USA ; Toyoshima, Y.

The demand for higher current density in metal interconnects continues to increase to meet the challenges of higher operation frequency and the more complex design requirement of deep submicrometer integrated circuits. However, improvement in the allowable interconnect current density is typically accompanied by higher wire resistance. The tradeoff between wire resistance and allowable current density must be managed to realize the most efficient interconnect system because both wire resistance and allowable current density affect signal propagation delay. This paper studies the impact of allowable current density on signal propagation delay, and demonstrates an approach to balance wire resistance and allowable current density from the perspective of minimizing signal propagation delay.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 12 )