Cart (Loading....) | Create Account
Close category search window
 

Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Eichhorn, M. ; German-French Res. Inst. of St.-Louis ISL, France

Theoretical modeling of Watt-level average power Tm-doped fluoride glass fiber amplifiers operating at 1.87 μm is presented. To characterize and optimize these devices a computer model has been developed taking into account the full spectral information of the laser transition as well as all important ionic levels, their decay schemes and important cross-relaxation rates, being capable of modeling steady-state and especially transient characteristics of an optically pumped fiber as is needed for the amplification of short pulses. As a result, optimum fiber lengths and core sizes for maximum output power can be determined. It is shown that the influence of amplified spontaneous emission (ASE) onto amplifier efficiency and gain strongly depends on the fiber length for a given amplifier geometry, thus realistic modeling of the ASE background and its wavelength shift with respect to the fiber length is a key issue for the layout of amplifier fibers. The model is compared with experimental results obtained by amplification of 20-30-ns pulses at repetition rates in the range of 5-60 kHz. A good agreement between experiment and numerical results was reached without a substantial adjustment on the input parameters concerning amplification as well as continuous-wave ASE output power of an unseeded fiber.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:41 ,  Issue: 12 )

Date of Publication:

Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.