By Topic

1.25-Gb/s burst-mode receiver ICs with quick response for PON systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. Nakamura ; NTT Photonics Labs., Kanagawa, Japan ; Y. Imai ; Y. Umeda ; Jun Endo
more authors

This paper describes burst-mode receiver ICs with quick response for 1.25-Gb/s optical access networks. In a point-to-multipoint fiber access system, such as a passive optical network (PON) system, the receiver should be able to handle burst-data packets with different amplitudes. In burst-mode transmission, a receiver with a quick response is desired for high efficiency in data transmission. In addition, high sensitivity is also required for such a shared access system. To achieve a quick response and high sensitivity at the same time, a transimpedance amplifier (TIA) with three gain modes has been designed. The use of a hysteresis comparator enables fast gain mode switching. A limiting amplifier with feed-forward auto-offset compensation (AOC) is also used for quick response to burst data. These circuit techniques require no external adjustment. Using these design techniques, optical receiver ICs were fabricated in SiGe-BiCMOS technology. The optical receiver built with the ICs exhibits a settling time of under 20 bits and a sensitivity of -30 dBm with wide dynamic range of over 26 dB using a p-i-n photodiode (PD) for burst-mode optical input at 1.25 Gb/s. These fast-response receiver chips improve the data transmission efficiency. The use of a conventional p-i-n PD and the freedom from external adjustment make it possible to build an inexpensive receiver.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:40 ,  Issue: 12 )