By Topic

All-digital PLL and transmitter for mobile phones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Staszewski, R.B. ; Wireless Analog Technol. Center, Texas Instrum. Inc., Dallas, TX, USA ; Wallberg, J.L. ; Rezeq, S. ; Chih-Ming Hung
more authors

We present the first all-digital PLL and polar transmitter for mobile phones. They are part of a single-chip GSM/EDGE transceiver SoC fabricated in a 90 nm digital CMOS process. The circuits are architectured from the ground up to be compatible with digital deep-submicron CMOS processes and be readily integrateable with a digital baseband and application processor. To achieve this, we exploit the new paradigm of a deep-submicron CMOS process environment by leveraging on the fast switching times of MOS transistors, the fine lithography and the precise device matching, while avoiding problems related to the limited voltage headroom. The transmitter architecture is fully digital and utilizes the wideband direct frequency modulation capability of the all-digital PLL. The amplitude modulation is realized digitally by regulating the number of active NMOS transistor switches in accordance with the instantaneous amplitude. The conventional RF frequency synthesizer architecture, based on a voltage-controlled oscillator and phase/frequency detector and charge-pump combination, has been replaced with a digitally controlled oscillator and a time-to-digital converter. The transmitter performs GMSK modulation with less than 0.5° rms phase error, -165 dBc/Hz phase noise at 20 MHz offset, and 10 μs settling time. The 8-PSK EDGE spectral mask is met with 1.2% EVM. The transmitter occupies 1.5 mm2 and consumes 42 mA at 1.2 V supply while producing 6 dBm RF output power.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:40 ,  Issue: 12 )
RFIC Virtual Journal, IEEE