Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Are you ready for lead-free electronics?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Eveloy, V. ; Dept. of Mech. Eng., Univ. of Maryland, College Park, MD, USA ; Ganesan, S. ; Fukuda, Y. ; Ji Wu
more authors

An expedient transition to lead-free electronics has become necessary for most electronics industry sectors, considering the European directives [The Waste of Electrical and Electronic Equipment (WEEE) directive requires manufacturers to reduce the disposal waste of electrical and electronic products by reuse, recycling, and other forms of recovery. The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) legislation restricts the use of lead, as well as cadmium, mercury, hexavalent chromium, and two halide-containing flame retardants, namely polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), in eight of the ten product categories identified in the WEEE directive. Unlike for WEEE, whereby EU member states are free to set more severe national legislation satisfying the WEEE directive requirements, RoHS is a single market directive. Both the WEEE and RoHS directives will become effective on July 1, 2006] , other possible legislative requirements, and market forces , . In fact, the consequences of not meeting the European July 2006 deadline for transition to lead-free electronics may translate into global market losses. Considering that lead-based electronics have been in use for over 40 years, the adoption of lead-free technology represents a dramatic change. The industry is being asked to adopt different electronic soldering materials , component termination metallurgies, and printed circuit board finishes. This challenge is accompanied by the need to requalify component-board assembly and rework processes, as well as implement test, inspection, and documentation procedures. In addition, lead-free technology is associated with increased materials, design, and manufacturing costs. [The cost of implementing the RoHS directive in the EU has been estimated to be US$ 20Bn . Intel Corporation's efforts to remove lead from its chips have been estimated to cost the company over US$ 100 million so far]. The use of lead-free materials and processes has also prompted new reliability concerns , as a result of different alloy metallurgies and higher assembly process temperatures relative to tin-lead soldering. This paper provides guidance to efficiently implement the lead-free transition process that a- ccounts for the company's market share, associated exemptions, technological feasibility, product reliability requirements, and cost. Lead-free compliance, part and supplier selection, manufacturing, and education and training are addressed. The guidance is presented in the form of answers to key questions.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:28 ,  Issue: 4 )