By Topic

Simulations of direct-die-attached microchannel coolers for the thermal management of GaN-on-SiC microwave amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Calame, J.P. ; Naval Res. Lab., Washington, DC, USA ; Myers, R.E. ; Wood, F.N. ; Binari, S.C.

This paper presents finite-element thermo-mechanical simulation studies of microchannel-based techniques to cool AlGaN/GaN high electron mobility rf transistors grown on SiC substrates. A number of problems are considered, including standard thickness dies on both oxygen-free-high-conductivity (OFHC) copper and AlN microchannel coolers, as well as thinned dies on a hybrid diamond/silicon microchannel cooler. The active device sizes and cooling strategies selected are relevant to X-band (∼10 GHz) amplifiers dissipating 50-100 W of steady-state waste heat. The effects of die attach materials on device temperature and mechanical stresses are studied. The plastic yielding behaviors of the die attach material and other metallic portions of the package are incorporated into the analysis. The removal of 100 W of steady-state waste heat in an example X-band compatible device is found to be consistent with 140-185°C maximum transistor junction temperatures and tolerable mechanical stresses.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:28 ,  Issue: 4 )