By Topic

Quasi-3-D analytical modeling of the magnetic field of an axial flux permanent-magnet synchronous machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Azzouzi, Jaouad ; Electr. Eng. Dept., Univ. of Le Havre, France ; Barakat, G. ; Dakyo, B.

A quasi-three-dimensional (3-D) analytical model of the magnetic field in an axial flux permanent-magnet synchronous machine is presented. This model is derived from an exact two-dimensional analytical solution of the magnetic field extended to the 3-D case by a simple and effective radial dependence modeling of the magnetic field. The obtained quasi-3-D solution allows rapid parametric studies of the air-gap magnetic field. Then, analytical modeling of the cogging torque is presented. It is based on the obtained quasi-3-D analytical solution. Results issued from the proposed model in the air gap are compared with those stemming from a 3-D finite-element method simulation as well as with prototype measured values.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:20 ,  Issue: 4 )