By Topic

High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lien, Victor ; Dept. of Electr. & Comput. Eng., Univ. of California, La Jolla, CA, USA ; Kai Zhao ; Berdichevsky, Y. ; Yu-Hwa Lo

We demonstrate a new detection scheme for a microfabricated flow cytometer. The fluidic-photonic integrated circuits (FPICs) that perform flow cytometric detection possess new functionality, such as on-chip excitation, time-of-flight measurement, and above all, greatly enhanced fluorescence detection sensitivity. Using the architecture of space-division waveguide demultiplexer and the technique of cross-correlation analysis, we obtained high detection sensitivity with a simple light source and a detector, without high-power laser excitation and lock-in amplifier (or photomultiplier tube) detection. Besides improving cytometric detection, the technology of integrating microfluidic circuits with photonic circuits into the FPIC presents a new platform for sophisticated biomedical-sensing devices with significant cost, size, and performance advantages.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:11 ,  Issue: 4 )