Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sharma, U. ; Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Fried, N.M. ; Kang, J.U.

A fully integrated all-fiber implementation of common-path interferometer-based optical coherence tomography (OCT) has been successfully demonstrated. Unlike conventional Michelson-based OCT systems, there is no separate reference arm as the reference signal is derived from the probe-end back reflection. This leads to "downlead insensitivity", which makes the device more compatible with existing endoscopic medical instruments. We also theoretically analyze the optimization of system sensitivity in balanced and unbalanced detection. We have conducted experiments to confirm some of our signal-to-noise ratio (SNR) analysis, which are in excellent agreement with the theory. Interestingly, our analysis predicts existence of much higher beat noise in common-path OCT as compared with the conventional OCT. We predict a maximum upper limit of only 6-dB improvement in the SNR when the balanced detection is used, as compared with the unbalanced detection.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:11 ,  Issue: 4 )