Cart (Loading....) | Create Account
Close category search window
 

A high-resolution MACROscope with differential phase contrast, transmitted light, confocal fluorescence, and hyperspectral capabilities for large-area tissue imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Constantinou, P. ; Dept. of Med. Biophys., Ontario Cancer Inst./Univ. of Toronto, Ont., Canada ; Nicklee, T. ; Hedley, D.W. ; Damaskinos, S.
more authors

Recent advances in imaging technology have contributed greatly to biological science. Confocal fluorescence microscopes can acquire two-dimensional and three-dimensional images of biological samples such as live or fixed cells and tissues. Specimens that are large (e.g., a 10 mm×10 mm tissue section) and overfill the field of view (FOV) of typical microscope objectives require the use of image tiling to cover the entire specimen. This can be time consuming and cause artifacts in the composite image. The MACROscope system (Biomedical Photometrics Inc., Waterloo, ON, Canada) is a confocal device with a 22 mm×70 mm FOV designed for imaging large tissue sections in a single frame. The prototype demonstrated here can obtain images in reflected, transmitted, fluorescence, phase contrast, and hyperspectral modes. The new spectral imaging mode is characterized with a series of test targets, and sampled spectra are compared to a commercial spectrometer. Fluorescence images of human SiHa tumor xenografts stained with CD31-Cy3, showing blood vessel location, and EF5-Cy5, showing areas of tissue hypoxia, were collected. Differential phase contrast images of the same section, as well as human epithelial cells, were recorded to assess the phase contrast mode. Additionally, fluorescence images of Cytokeratin-Cy3 stained squamous cell carcinoma tissue sections were captured. Finally, red, green, blue transmitted light images of human tongue were obtained. This new device avoids the need for image tiling and provides simultaneous imaging of multiple fluorescently labeled tissue-specific markers in large biological samples. This enables time- and cost-efficient imaging of (immuno)histopathological samples. This device may also serve in the imaging of high-throughput DNA and tissue arrays.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:11 ,  Issue: 4 )

Date of Publication:

July-Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.