Cart (Loading....) | Create Account
Close category search window
 

Real-time neuroevolution in the NERO video game

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stanley, K.O. ; Dept. of Comput. Sci., Univ. of Texas, Austin, TX, USA ; Bryant, B.D. ; Miikkulainen, R.

In most modern video games, character behavior is scripted; no matter how many times the player exploits a weakness, that weakness is never repaired. Yet, if game characters could learn through interacting with the player, behavior could improve as the game is played, keeping it interesting. This paper introduces the real-time Neuroevolution of Augmenting Topologies (rtNEAT) method for evolving increasingly complex artificial neural networks in real time, as a game is being played. The rtNEAT method allows agents to change and improve during the game. In fact, rtNEAT makes possible an entirely new genre of video games in which the player trains a team of agents through a series of customized exercises. To demonstrate this concept, the Neuroevolving Robotic Operatives (NERO) game was built based on rtNEAT. In NERO, the player trains a team of virtual robots for combat against other players' teams. This paper describes results from this novel application of machine learning, and demonstrates that rtNEAT makes possible video games like NERO where agents evolve and adapt in real time. In the future, rtNEAT may allow new kinds of educational and training applications through interactive and adapting games.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:9 ,  Issue: 6 )

Date of Publication:

Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.