By Topic

Planning an endgame move set for the game RISK: a comparison of search algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. M. Vaccaro ; Univ. of California, La Jolla, CA, USA ; C. C. Guest

Seven algorithms used to search for solutions in dynamic planning and execution problems are compared. The specific problem is endgame moves for the board game RISK. This paper concentrates on comparison of search methods for the best plan using a fixed evaluation function, fixed time to plan, and randomly generated situations that correspond to endgames in RISK with eight remaining players. The search strategies compared are depth-first, breadth-first, best-first, random walk, gradient ascent, simulated annealing, and evolutionary computation. The approaches are compared for each example based on the number of opponents eliminated, plan completion probability, and value of ending position (if the moves do not complete the game). Simulation results indicate that the evolutionary approach is superior to the other methods in 85% of the cases considered. Among the other algorithms, simulated annealing is the most suitable for this problem.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:9 ,  Issue: 6 )