Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Systematically incorporating domain-specific knowledge into evolutionary speciated checkers players

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kim, K.-J. ; Dept. of Comput. Sci., Yonsei Univ., South Korea ; Sung-Bae Cho

The evolutionary approach for gaming is different from the traditional one that exploits knowledge of the opening, middle, and endgame stages. It is, therefore, sometimes inefficient to evolve simple heuristics that may be created easily by humans because it is based purely on a bottom-up style of construction. Incorporating domain knowledge into evolutionary computation can improve the performance of evolved strategies and accelerate the speed of evolution by reducing the search space. In this paper, we propose the systematic insertion of opening knowledge and an endgame database into the framework of evolutionary checkers. Also, the common knowledge that the combination of diverse strategies is better than a single best one is included in the middle stage and is implemented using crowding algorithm and a strategy combination scheme. Experimental results show that the proposed method is promising for generating better strategies.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:9 ,  Issue: 6 )