Cart (Loading....) | Create Account
Close category search window

A game-theoretic and dynamical-systems analysis of selection methods in coevolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ficici, S.G. ; Artificial Intelligence Res. Group, Harvard Univ., Cambridge, MA, USA ; Melnik, O. ; Pollack, J.B.

We use evolutionary game theory (EGT) to investigate the dynamics and equilibria of selection methods in coevolutionary algorithms. The canonical selection method used in EGT is equivalent to the standard "fitness-proportional" selection method used in evolutionary algorithms. All attractors of the EGT dynamic are Nash equilibria; we focus on simple symmetric variable-sum games that have polymorphic Nash-equilibrium attractors. Against the dynamics of proportional selection, we contrast the behaviors of truncation selection, (μ,λ),(μ+λ), linear ranking, Boltzmann, and tournament selection. Except for Boltzmann selection, each of the methods we test unconditionally fail to achieve polymorphic Nash equilibrium. Instead, we find point attractors that lack game-theoretic justification, cyclic dynamics, or chaos. Boltzmann selection converges onto polymorphic Nash equilibrium only when selection pressure is sufficiently low; otherwise, we obtain attracting limit-cycles or chaos. Coevolutionary algorithms are often used to search for solutions (e.g., Nash equilibria) of games of strategy; our results show that many selection methods are inappropriate for finding polymorphic Nash solutions to variable-sum games. Another application of coevolution is to model other systems; our results emphasize the degree to which the model's behavior is sensitive to implementation details regarding selection-details that we might not otherwise believe to be critical.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:9 ,  Issue: 6 )

Date of Publication:

Dec. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.