Cart (Loading....) | Create Account
Close category search window
 

MRI and implanted medical devices: basic interactions with an emphasis on heating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nyenhuis, John A. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Sung-Min Park ; Kamondetdacha, R. ; Amjad, A.
more authors

There are three principal magnetic fields in magnetic resonance imaging (MRI) that may interact with medical implants. The static field will induce force and torque on ferromagnetic objects. The pulsed gradients are of audio frequency and the implant may concentrate the induced currents, with a potential for nerve stimulation or electrical inference. The currents induced in the body by the radio frequency (RF) field may also be concentrated by an implant, resulting in potentially dangerous heating of surrounding tissues. This paper presents basic information about MRI interactions with implants with an emphasis on RF-induced heating of leads used for deep brain stimulation (DBS). The temperature rise at the electrodes was measured in vitro as a function of the overall length of a DBS lead at an RF frequency of 64 MHz. The maximal temperature rise occurred for an overall length of 41 cm. The method of moments was used to calculate the current induced in the lead. From the induced currents, the RF power deposition near the electrodes was calculated and the heat equation was used to model the temperature rise. The calculated temperature rises as a function of lead length were in good agreement with the measured values.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:5 ,  Issue: 3 )

Date of Publication:

Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.