By Topic

Cache and memory error detection, correction, and reduction techniques for terrestrial servers and workstations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Slayman, C.W. ; Sun Microsystems Inc., Santa Clara, CA, USA

As the size of the SRAM cache and DRAM memory grows in servers and workstations, cosmic-ray errors are becoming a major concern for systems designers and end users. Several techniques exist to detect and mitigate the occurrence of cosmic-ray upset, such as error detection, error correction, cache scrubbing, and array interleaving. This paper covers the tradeoffs of these techniques in terms of area, power, and performance penalties versus increased reliability. In most system applications, a combination of several techniques is required to meet the necessary reliability and data-integrity targets.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:5 ,  Issue: 3 )