By Topic

On distributed fault-tolerant detection in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Luo, X. ; Dept. of Comput. Sci., Wayne State Univ., Detroit, MI, USA ; Ming Dong ; Huang, Y.

In this paper, we consider two important problems for distributed fault-tolerant detection in wireless sensor networks: 1) how to address both the noise-related measurement error and sensor fault simultaneously in fault-tolerant detection and 2) how to choose a proper neighborhood size n for a sensor node in fault correction such that the energy could be conserved. We propose a fault-tolerant detection scheme that explicitly introduces the sensor fault probability into the optimal event detection process. We mathematically show that the optimal detection error decreases exponentially with the increase of the neighborhood size. Experiments with both Bayesian and Neyman-Pearson approaches in simulated sensor networks demonstrate that the proposed algorithm is able to achieve better detection and better balance between detection accuracy and energy usage. Our work makes it possible to perform energy-efficient fault-tolerant detection in a wireless sensor network.

Published in:

Computers, IEEE Transactions on  (Volume:55 ,  Issue: 1 )