By Topic

Motion estimation of a moving range sensor by image sequences and distorted range data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Banno, A. ; Inst. of Ind. Sci., Tokyo Univ., Japan ; Hasegawa, K. ; Ikeuchi, K.

For a large scale object, scanning from the air is one of the most efficient methods of obtaining 3D data. In the case of large cultural heritage objects, there are some difficulties in scanning them with respect to safety and efficiency. To remedy these problems, we have been developing a novel 3D measurement system, the floating laser range sensor (FLRS), in which a rage sensor is suspended beneath a balloon. The obtained data, however, have some distortion due to the intra-scanning movement. In this paper, we propose a method to recover 3D range data obtained by a moving laser range sensor; this method is applicable not only to our FLRS, but also to a general moving range sensor. Using image sequences from a video camera mounted on the FLRS enables us to estimate the motion of the FLRS without any physical sensors such as gyros and GPS. At first, the initial values of camera motion parameters are estimated by perspective factorization. The next stage refines camera motion parameters using the relationships between camera images and the range data distortion. Finally, by using the refined parameter, the distorted range data are recovered. We applied this method to an actual scanning project and the results showed the effectiveness of our method.

Published in:

Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on

Date of Conference:

2-6 Aug. 2005