By Topic

Trajectory tracking performance in task space of robot manipulators: an adaptive neural controller design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Martins, N.A. ; Departamento de Informatica, Univ. Estadual de Maringa, Brazil ; Figueiredo, M.F. ; Goncalves, P.C. ; de Alencar, M.
more authors

An adaptive neural network control design for robot manipulators in task space coordinates is provided in this paper. This controller design and a direct adaptive control strategy (passivity-based controller) are simulated for the same trajectory, considering the presence of the friction torques and the influence of payload. Performances are evaluated according to behavior of position tracking, and to trajectory tracking accuracy. The adaptive neural network controller is developed based on a neural network modeling technique which neither requires the evaluation of inverse dynamical model nor the time-consuming training process, and does not require the inverse of the Jacobian matrix.

Published in:

Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on

Date of Conference:

2-6 Aug. 2005