By Topic

Conditional models for contextual human motion recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We present algorithms for recognizing human motion in monocular video sequences, based on discriminative conditional random field (CRF) and maximum entropy Markov models (MEMM). Existing approaches to this problem typically use generative (joint) structures like the hidden Markov model (HMM). Therefore they have to make simplifying, often unrealistic assumptions on the conditional independence of observations given the motion class labels and cannot accommodate overlapping features or long term contextual dependencies in the observation sequence. In contrast, conditional models like the CRFs seamlessly represent contextual dependencies, support efficient, exact inference using dynamic programming, and their parameters can be trained using convex optimization. We introduce conditional graphical models as complementary tools for human motion recognition and present an extensive set of experiments that show how these typically outperform HMMs in classifying not only diverse human activities like walking, jumping. running, picking or dancing, but also for discriminating among subtle motion styles like normal walk and wander walk

Published in:

Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1  (Volume:2 )

Date of Conference:

17-21 Oct. 2005