By Topic

Object categorization by learned universal visual dictionary

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Winn ; Microsoft Res., Cambridge, UK ; A. Criminisi ; T. Minka

This paper presents a new algorithm for the automatic recognition of object classes from images (categorization). Compact and yet discriminative appearance-based object class models are automatically learned from a set of training images. The method is simple and extremely fast, making it suitable for many applications such as semantic image retrieval, Web search, and interactive image editing. It classifies a region according to the proportions of different visual words (clusters in feature space). The specific visual words and the typical proportions in each object are learned from a segmented training set. The main contribution of this paper is twofold: i) an optimally compact visual dictionary is learned by pair-wise merging of visual words from an initially large dictionary. The final visual words are described by GMMs. ii) A novel statistical measure of discrimination is proposed which is optimized by each merge operation. High classification accuracy is demonstrated for nine object classes on photographs of real objects viewed under general lighting conditions, poses and viewpoints. The set of test images used for validation comprise: i) photographs acquired by us, ii) images from the Web and iii) images from the recently released Pascal dataset. The proposed algorithm performs well on both texture-rich objects (e.g. grass, sky, trees) and structure-rich ones (e.g. cars, bikes, planes)

Published in:

Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1  (Volume:2 )

Date of Conference:

17-21 Oct. 2005