By Topic

A theory of refractive and specular 3D shape by light-path triangulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kutulakos, K.N. ; Toronto Univ., Ont. ; Steger, E.

We investigate the feasibility of reconstructing an arbitrarily-shaped specular scene (refractive or mirror-like) from one or more viewpoints. By reducing shape recovery to the problem of reconstructing individual 3D light paths that cross the image plane, we obtain three key results. First, we show how to compute the depth map of a specular scene from a single viewpoint, when the scene redirects incoming light just once. Second, for scenes where incoming light undergoes two refractions or reflections, we show that three viewpoints are sufficient to enable reconstruction in the general case. Third, we show that it is impossible to reconstruct individual light paths when light is redirected more than twice. Our analysis assumes that, for every point on the image plane, we know at least one 3D point on its light path. This leads to reconstruction algorithms that rely on an "environment matting" procedure to establish pixel-to-point correspondences along a light path. Preliminary results for a variety of scenes (mirror, glass, etc) are also presented

Published in:

Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on  (Volume:2 )

Date of Conference:

17-21 Oct. 2005