By Topic

Neighborhood preserving embedding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaofei He ; Dept. of Comput. Sci., Chicago Univ., IL, USA ; Deng Cai ; Shuicheng Yan ; Hong-Jiang Zhang

Recently there has been a lot of interest in geometrically motivated approaches to data analysis in high dimensional spaces. We consider the case where data is drawn from sampling a probability distribution that has support on or near a submanifold of Euclidean space. In this paper, we propose a novel subspace learning algorithm called neighborhood preserving embedding (NPE). Different from principal component analysis (PCA) which aims at preserving the global Euclidean structure, NPE aims at preserving the local neighborhood structure on the data manifold. Therefore, NPE is less sensitive to outliers than PCA. Also, comparing to the recently proposed manifold learning algorithms such as Isomap and locally linear embedding, NPE is defined everywhere, rather than only on the training data points. Furthermore, NPE may be conducted in the original space or in the reproducing kernel Hilbert space into which data points are mapped. This gives rise to kernel NPE. Several experiments on face database demonstrate the effectiveness of our algorithm

Published in:

Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1  (Volume:2 )

Date of Conference:

17-21 Oct. 2005