By Topic

Globally optimal estimates for geometric reconstruction problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kahl, F. ; Comput. Sci. & Eng., California Univ., San Diego, CA ; Henrion, D.

We introduce a framework for computing statistically optimal estimates of geometric reconstruction problems. While traditional algorithms often suffer from either local minima or nonoptimality - or a combination of both - we pursue the goal of achieving global solutions of the statistically optimal cost-function. Our approach is based on a hierarchy of convex relaxations to solve nonconvex optimization problems with polynomials. These convex relaxations generate a monotone sequence of lower bounds and we show how one can detect whether the global optimum is attained at a given relaxation. The technique is applied to a number of classical vision problems: triangulation, camera pose, homography estimation and last, but not least, epipolar geometry estimation. Experimental validation on both synthetic and real data is provided. In practice, only a few relaxations are needed for attaining the global optimum

Published in:

Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on  (Volume:2 )

Date of Conference:

17-21 Oct. 2005