By Topic

Design and analysis of self-repairable MEMS accelerometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xingguo Xiong ; Dept. of ECECS, Cincinnati Univ., OH, USA ; Yu-Liang Wu ; Wen-Ben Jone

In this paper, a self-repairable MEMS (SRMEMS) accelerometer design is proposed. The accelerometer consists of (n + m) identical modules: n of them serve as the main device, while the remaining m modules act as the redundancy. If any of the working module in the main device is found faulty, the control circuit will replace it with a good redundant module. In this way, the faulty device can be self-repaired through redundancy. The sensitivity loss due to device modularization can be well compensated by different design alternatives. The yield model for MEMS redundancy repair is developed. The simulation results show that the BISR (built-in self-repair) design leads to effective yield increase compared to nonBISR design, especially for a moderate nonBISR yield. By implementing the fault tolerance feature into MEMS devices, the yield as well as the reliability of a MEMS device implemented in a SoC can be improved.

Published in:

20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05)

Date of Conference:

3-5 Oct. 2005