By Topic

Prediction of outer membrane proteins by support vector machines using combinations of gapped amino acid pair compositions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ssu-Hua Huang ; Dept. of Comput. Sci. & Eng., Yuan Ze Univ., Taoyuan, Taiwan ; Ru-Sheng Liu ; Chien-Yu Chen ; Chao, Ya-Ting
more authors

Discriminating outer membrane proteins from proteins with other subcellular localizations and with other folding classes are both important to predict farther their functions and structures. In this paper, we propose a method for discriminating outer membrane proteins from other proteins by support vector machines using combinations of gapped amino acid pair compositions. Using 5-fold cross-validation, the method achieves 95% precision and 92% recall on the dataset of proteins with well-annotated subcellular localizations, consisting of 471 outer membrane proteins and 1,120 other proteins. When applied on another dataset of 377 outer membrane proteins and 674 globular proteins belonging to four typical structural classes, the method reaches 96% precision and recall and correctly excludes 98% of the globular proteins. Our method outperforms the OM classifier of PSORTb v.2.0 and a method based on dipeptide composition.

Published in:

Bioinformatics and Bioengineering, 2005. BIBE 2005. Fifth IEEE Symposium on

Date of Conference:

19-21 Oct. 2005