By Topic

Applying neural network algorithm to data association technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chung, Y.-N. ; Dept. of Electr. Eng., Da-Yeh Univ., Chang-Hua, Taiwan ; Chen, H.-T. ; Juang, D.-J. ; Chen, J.-Y.
more authors

Data association plays an important role in radar tracking algorithm. The problem of tracking multiple targets is studied in this paper. In order to solve the complicated situation and reduce computation burden because of the multiple tracking environment, an approach has been developed in this paper. This algorithm is implemented with an adaptive filter which consists of a data association technique denoted competitive Hopfield neural network and Kalman filtering to solve both data association and target tracking problems simultaneously. In order to prove the tracking performance, a computer simulation algorithm is proposed in this paper. Because of its computation capability of this algorithm, the radar measurement related to existed target tracks can be chosen optimally. Computer simulation results indicate that this approach successfully and optimally solves the data association problems.

Published in:

Cellular Neural Networks and Their Applications, 2005 9th International Workshop on

Date of Conference:

28-30 May 2005