By Topic

A novel layered graph model for topology formation and routing in dynamic spectrum access networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chunsheng Xin ; Dept. of Comput. Sci., Norfolk State Univ., Norfolk, CA ; Bo Xie ; Chien-Chung Shen

This paper studies a fundamental problem in dynamic spectrum access (DSA) networks: given a set of detected spectrum bands that can be temporarily used by each node in a DSA network, how to form a topology by selecting spectrum bands for each radio interface of each node, called topology formation in this paper. We propose a novel layered graph to model the temporarily available spectrum bands, called spectrum opportunities (SOPs) in this paper, and use this layered graph model to develop effective and efficient routing and interface assignment algorithms to form near-optimal topologies for DSA networks. We have evaluated the performance of our layered graph approach and compared it to a sequential interface assignment algorithm. The numerical results show that the layered graph approach significantly outperforms the sequential interface assignment

Published in:

First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005.

Date of Conference:

8-11 Nov. 2005