Cart (Loading....) | Create Account
Close category search window

Intercarrier interference self-cancellation space-frequency codes for MIMO-OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dao, D.N. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, Alta., Canada ; Tellambura, C.

Space-frequency (SF) codes that exploit both spatial and frequency diversity can be designed using orthogonal frequency division multiplexing (OFDM). However, OFDM is sensitive to frequency offset (FO), which generates intercarrier interference (ICI) among subcarriers. We investigate the pair-wise error probability (PEP) performance of SF codes over quasistatic, frequency selective Rayleigh fading channels with FO. We prove that the conventional SF code design criteria remain valid. The negligible performance loss for small FOs (less than 1%), however, increases with FO and with signal to noise ratio (SNR). While diversity can be used to mitigate ICI, as FO increases, the PEP does not rapidly decay with SNR. Therefore, we propose a new class of SF codes called ICI self-cancellation SF (ISC-SF) codes to combat ICI effectively even with high FO (10%). ISC-SF codes are constructed from existing full diversity space-time codes. Importantly, our code design provide a satisfactory tradeoff among error correction ability, ICI reduction and spectral efficiency. Furthermore, we demonstrate that ISC-SF codes can also mitigate the ICI caused by phase noise and time varying channels. Simulation results affirm the theoretical analysis.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:54 ,  Issue: 5 )

Date of Publication:

Sept. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.