By Topic

Multiple-antenna-aided OFDM employing genetic-algorithm-assisted minimum bit error rate multiuser detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Y. Alias ; Sch. of Electron. & Comput. Sci., Univ. of Southampton, UK ; Sheng Chen ; L. Hanzo

The family of minimum bit error rate (MBER) multiuser detectors (MUD) is capable of outperforming the classic minimum mean-squared error (MMSE) MUD in terms of the achievable bit-error rate (BER) owing to directly minimizing the BER cost function. In this paper, we will invoke genetic algorithms (GAs) for finding the optimum weight vectors of the MBER MUD in the context of multiple-antenna-aided multiuser orthogonal frequency division multiplexing (OFDM) . We will also show that the MBER MUD is capable of supporting more users than the number of receiver antennas available, while outperforming the MMSE MUD.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:54 ,  Issue: 5 )