Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A novel method for determination of dielectric properties of materials using a combined embedded modulated scattering and near-field microwave techniques-Part I: forward model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hughes, D. ; Electr. & Comput. Eng. Dept., Univ. of Missouri-Rolla, Rolla, MO, USA ; Zoughi, R.

The use of combined embedded modulated scattering technique and near-field microwave nondestructive testing techniques is investigated as a novel method for evaluating the dielectric properties of a material. The forward formulation for determining the reflection coefficient at the aperture of a waveguide radiating into a dielectric half-space in which a PIN diode-loaded dipole (i.e., modulated scattering technique probe) is embedded is presented. This formulation is based upon calculating the near-field coupling between the waveguide and the dipole as a mutual impedance.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:54 ,  Issue: 6 )