By Topic

Computationally efficient systolic architecture for computing the discrete Fourier transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nash, J.G. ; Centar, Los Angeles, CA, USA

A new high-performance systolic architecture for calculating the discrete Fourier transform (DFT) is described which is based on two levels of transform factorization. One level uses an index remapping that converts the direct transform into structured sets of arithmetically simple four-point transforms. Another level adds a row/column decomposition of the DFT. The architecture supports transform lengths that are not powers of two or based on products of coprime numbers. Compared to previous systolic implementations, the architecture is computationally more efficient and uses less hardware. It provides low latency as well as high throughput, and can do both one- and two-dimensional DFTs. An automated computer-aided design tool was used to find latency and throughput optimal designs that matched the target field programmable gate array structure and functionality.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 12 )