By Topic

High-resolution biosensor spectral peak shift estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. C. Karl ; Electr. & Comput. Eng. & Biomed. Eng. Depts., Boston Univ., MA, USA ; H. H. Pien

In this paper, we present a maximum likelihood (ML) approach to high-resolution estimation of the shifts of a spectral signal. This spectral signal arises in application of optically based resonant biosensors, where high resolution in the estimation of signal shift is synonymous with high sensitivity to biological interactions. For the particular sensor of interest, the underlying signal is nonuniformly sampled and exhibits Poisson amplitude statistics. Shift estimation accuracies orders of magnitude finer than the sample spacing are sought. The new ML-based formulation leads to a solution approach different from typical resonance shift estimation methods based on polynomial fitting and peak (or ) estimation and tracking.

Published in:

IEEE Transactions on Signal Processing  (Volume:53 ,  Issue: 12 )