By Topic

Oversampled filter banks as error correcting codes: theory and impulse noise correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
F. Labeau ; McGill Univ., Montreal, Que., Canada ; Jui-Chiu Chiang ; M. Kieffer ; P. Duhamel
more authors

Oversampled filter banks (OFBs) provide an overcomplete representation of their input signal. This paper describes how OFBs can be considered as error-correcting codes acting on real or complex sequences, very much like classical binary convolutional codes act on binary sequences. The structured redundancy introduced by OFBs in subband signals can be used to increase robustness to noise. In this paper, we define the notions of code subspace, syndrome, and parity-check polynomial matrix for OFBs. Furthermore, we derive generic expressions for projection-based decoding, suitable for the case when a simple second-order model completely characterizes the noise incurred by subband signals. We also develop a nonlinear hypotheses-test based decoding algorithm for the case when the noise in subbands is constituted by a Gaussian background noise and impulsive errors (a model that adequately describes the action of both quantization noise and transmission errors). Simulation results show that the algorithm effectively removes the effect of impulsive errors occurring with a probability of 10-3.

Published in:

IEEE Transactions on Signal Processing  (Volume:53 ,  Issue: 12 )