By Topic

High-rate concatenated space-time block code M-TCM designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Siwamogsatham, S. ; Nat. Electron. & Comput. Technol. Center, Phatumthai, Thailand ; Fitz, M.P.

In this paper, a new technique to design improved high-rate space-time (ST) codes is proposed based on the concept of concatenated ST block code (STBC) and outer trellis-coded modulation (M-TCM) encoder constructions. Unlike the conventional rate-lossy STBC-MTCM schemes, the proposed designs produce higher rate ST codes by expanding the codebook of the inner orthogonal STBC. The classic set partitioning concept is adopted to realize the STBC-MTCM designs with large coding gains. The proposed expanded STBC-MTCM designs for the two-, three-, and four-transmitter cases are illustrated. Simulation results show the proposed STBC-MTCM designs significantly outperform the traditional ST-TCM schemes. Furthermore, decoding complexity of the proposed scheme is low because signal orthogonality is exploited to ease data decoding.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 12 )