By Topic

On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Azarian, K. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; El Gamal, H. ; Schniter, P.

We propose novel cooperative transmission protocols for delay-limited coherent fading channels consisting of N (half-duplex and single-antenna) partners and one cell site. In our work, we differentiate between the relay, cooperative broadcast (down-link), and cooperative multiple-access (CMA) (up-link) channels. The proposed protocols are evaluated using Zheng-Tse diversity-multiplexing tradeoff. For the relay channel, we investigate two classes of cooperation schemes; namely, amplify and forward (AF) protocols and decode and forward (DF) protocols. For the first class, we establish an upper bound on the achievable diversity-multiplexing tradeoff with a single relay. We then construct a new AF protocol that achieves this upper bound. The proposed algorithm is then extended to the general case with (N-1) relays where it is shown to outperform the space-time coded protocol of Laneman and Wornell without requiring decoding/encoding at the relays. For the class of DF protocols, we develop a dynamic decode and forward (DDF) protocol that achieves the optimal tradeoff for multiplexing gains 0lesrles1/N. Furthermore, with a single relay, the DDF protocol is shown to dominate the class of AF protocols for all multiplexing gains. The superiority of the DDF protocol is shown to be more significant in the cooperative broadcast channel. The situation is reversed in the CMA channel where we propose a new AF protocol that achieves the optimal tradeoff for all multiplexing gains. A distinguishing feature of the proposed protocols in the three scenarios is that they do not rely on orthogonal subspaces, allowing for a more efficient use of resources. In fact, using our results one can argue that the suboptimality of previously proposed protocols stems from their use of orthogonal subspaces rather than the half-duplex constraint.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 12 )