By Topic

A detail-preserving scale-driven approach to change detection in multitemporal SAR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Bovolo ; Dept. of Inf. & Commun. Technol., Univ. of Trento, Italy ; L. Bruzzone

This paper presents a novel approach to change detection in multitemporal synthetic aperture radar (SAR) images. The proposed approach exploits a wavelet-based multiscale decomposition of the log-ratio image (obtained by a comparison of the original multitemporal data) aimed at achieving different scales (levels) of representation of the change signal. Each scale is characterized by a different tradeoff between speckle reduction and preservation of geometrical details. For each pixel, a subset of reliable scales is identified on the basis of a local statistic measure applied to scale-dependent log-ratio images. The final change-detection result is obtained according to an adaptive scale-driven fusion algorithm. Experimental results obtained on multitemporal SAR images acquired by the ERS-1 satellite confirm the effectiveness of the proposed approach.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:43 ,  Issue: 12 )