By Topic

Potential of Getis statistics to characterize the radiometric uniformity and stability of test sites used for the calibration of Earth observation sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bannari, A. ; Dept. of Geogr., Univ. of Ottawa, Ont., Canada ; Omari, K. ; Teillet, P.M. ; Fedosejevs, G.

The calibration of airborne and satellite remote sensing sensors is a fundamental step for the rigorous validation of products derived from satellite data. Because of the inaccessibility of Earth Observation Satellites on orbit, the direct calibration method based on a test site with ground reference data is often considered necessary. However, the problem of radiometric spatial uniformity and temporal stability of test sites constitutes an important issue in the accuracy achieved in calibration operations and the long-term characterization of satellite sensor radiometry. Generally, the coefficient of variation and semivariograms are the most widely used tools for evaluating the radiometric uniformity and stability of a calibration site. In this study, we analyze for the first time the potential of Getis statistics compared to the coefficient of variation for the study of the radiometric spatial uniformity and temporal stability of the Lunar Lake Playa, Nevada (LLPN) test site. The results obtained show the potential and the importance of the synergy generated by these two methods for analyzing the radiometric temporal stability of the LLPN site. Getis statistics provide an excellent spatial analysis of the site while the coefficient of variation provides complementary information on the temporal evolution of the site.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 12 )