By Topic

A soft computing approach for rainfall retrieval from the TRMM microwave imager

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
D. K. Sarma ; Kohima Sci. Coll., Nagaland, India ; M. Konwar ; J. Das ; S. Pal
more authors

A neural network model for rainfall retrieval over ocean from remotely sensed microwave (MW) brightness temperature (BT) is proposed. BT data are obtained from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The BT values from different channels of TMI over the Pacific Ocean (163° to 177°W and 18° to 34°S) are the input features. The near-surface rainfall rate from the Precipitation Radar (PR) are considered as a target. The proposed model consists of a neural network with online feature selection (FS) and clustering techniques. A K-means clustering algorithm is applied to cluster the selected features. Different networks have been trained to give an instantaneous rainfall rate with all input features as well as with selected features obtained by applying the FS algorithm. It is found that the hybrid network utilizing FS and clustering techniques performs better. The developed network is also validated with two independent datasets on March 14, 2000 over the Atlantic Ocean having stratiform rain and on March 21, 2000 over the Pacific Ocean having both stratiform and convective rain. In both cases, the hybrid network performs well with correlation coefficient improving to 0.78 and 0.81, respectively, in contrast to 0.70 and 0.75 for the network with all features. The rainfall rate retrieved from the hybrid network is also compared with the TMI surface rain rate, and a correlation of 0.84 and 0.75 is found for the two events. The proposed hybrid model is validated with a Doppler Weather Radar, and correlation of 0.52 is observed.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:43 ,  Issue: 12 )