By Topic

Solving minimum distance problems with convex or concave bodies using combinatorial global optimization algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Carretero, J.A. ; Dept. of Mech. Eng., Univ. of New Brunswick, Fredericton, NB, Canada ; Nahon, M.A.

Determining the minimum distance between convex objects is a problem that has been solved using many different approaches. On the other hand, computing the minimum distance between combinations of convex and concave objects is known to be a more complicated problem. Most methods propose to partition the concave object into convex subobjects and then solve the convex problem between all possible subobject combinations. This can add a large computational expense to the solution of the minimum distance problem. In this paper, an optimization-based approach is used to solve the concave problem without the need for partitioning concave objects into convex pieces. Since the optimization problem is no longer unimodal (i.e., has more than one local minimum point), global optimization techniques are used. Simulated Annealing (SA) and Genetic Algorithms (GAs) are used to solve the concave minimum distance problem. In order to reduce the computational expense, it is proposed to replace the objects' geometry by a set of points on the surface of each body. This reduces the problem to an unconstrained combinatorial optimization problem, where the combination of points (one on the surface of each body) that minimizes the distance will be the solution. Additionally, if the surface points are set as the nodes of a surface mesh, it is possible to accelerate the convergence of the global optimization algorithm by using a hill-climbing local optimization algorithm. Some examples using these novel approaches are presented.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 6 )