By Topic

A biologically inspired active compliant joint using local positive velocity feedback (LPVF)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schneider, A. ; Dept. of Biol. Cybern., Univ. of Bielefeld, Germany ; Cruse, H. ; Schmitz, J.

Starting from studies which revealed that positive feedback is found in the control system for walking in arthropods, we have constructed a new positive feedback driven joint that can be used for solving compliant motion tasks. We propose two different joint constructions each of which shows passive compliance. Based on these joints we introduce three different local positive velocity feedback (LPVF) controllers and discuss their properties in the context of motion generation in closed kinematic chains. The third circuit named undelayed dLPVF is used for the control of a compliant planar manipulator which turns a crank. Our concept is of highly decentralized nature and follows the idea of embodiment. In our case this means that a process which is controlled by LPVF controllers reveals its nature when the controllers interact with this process.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:35 ,  Issue: 6 )