By Topic

Platform-based design for an embedded-fingerprint-authentication device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schaumont, P. ; Electr. Eng. Dept., Univ. of California, Los Angeles, CA, USA ; Hwang, D. ; Verbauwhede, I.

Fingerprint authentication, in an embedded and portable context, requires complex signal, network, and security-protocol processing in a resource-constrained implementation. We present a platform-based design approach for this application, based on a hierarchy of virtual machines (VM). The fingerprint authentication is programmed in Java, C, and VHSIC hardware description language, and mapped onto a hierarchy of three machines, consisting of an embedded Java VM, an Sparc-V8 core, and an field programmable gate array. We show how our approach is able to cope with multiple concurrent design processes and multiple application domains, including biometrics signal processing, as well as security-protocol implementation. The platform-based design approach also deals with reuse requirements for embedded software and hardware. The formulation of a platform as a VM enables design exploration and incremental design validation throughout the design traject, and results in a specialized, but still programmable, platform. The Java bytecode of our fingerprint authentication takes less than 10 kB.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 12 )