By Topic

On modeling crosstalk faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kundu, S. ; Univ. of Massachusetts, Amherst, MA, USA ; Zachariah, S.T. ; Yi-Shing Chang ; Tirumurti, C.

Traditionally, digital testing of integrated semiconductor circuits has focused on manufacturing defects. There is another class of failures that happens due to circuit marginalities. Circuit-marginality failures are on the rise due to shrinking process geometries, diminishing supply voltage, sharper signal-transition rates, and aggressive styles in circuit design. There are many different marginality issues that may render a circuit nonoperational. Capacitive cross coupling between interconnects is known to be a leading cause for marginality-related failures. In this paper, we present novel techniques to model and prioritize capacitive crosstalk faults. Experimental results are provided to show effectiveness of the proposed modeling technique on large industrial designs.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 12 )