Cart (Loading....) | Create Account
Close category search window

Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Momenzadeh, M. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Jing Huang ; Tahoori, M.B. ; Lombardi, Fabrizio

Quantum-dot cellular automata (QCA) offers a new computing paradigm for nanotechnology. The basic logic elements of this technology are the majority voter (MV) and the inverter (INV). However, an experimental evaluation has shown that MV is not efficiently used during technology mapping by existing logic-synthesis tools. In this paper, we propose the design and characterization of a novel complex, yet very small, QCA logic gate: the and-or-inverter (AOI) gate. The paper presents a detailed simulation-based analysis of the AOI gate, as well as the study of QCA defects and their effects at the logic level. The AOI implements a universal logic gate; all elementary gates can be implemented by the AOI gate. Moreover, many two-level logic functions can be directly implemented by a single AOI gate. The AOI gate performs quite favorably, in terms of digital logic synthesis. Unlike MV, this gate is efficiently used by existing logic-synthesis tools. Our experimental data on synthesis of complex designs show that using the AOI gate instead of MV, results in up to 23.9% logic area savings, while improving the overall delay.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 12 )

Date of Publication:

Dec. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.