By Topic

Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mukhopadhyay, S. ; Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Mahmoodi, H. ; Roy, K.

In this paper, we have analyzed and modeled failure probabilities (access-time failure, read/write failure, and hold failure) of synchronous random-access memory (SRAM) cells due to process-parameter variations. A method to predict the yield of a memory chip based on the cell-failure probability is proposed. A methodology to statistically design the SRAM cell and the memory organization is proposed using the failure-probability and the yield-prediction models. The developed design strategy statistically sizes different transistors of the SRAM cell and optimizes the number of redundant columns to be used in the SRAM array, to minimize the failure probability of a memory chip under area and leakage constraints. The developed method can be used in an early stage of a design cycle to enhance memory yield in nanometer regime.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 12 )