Cart (Loading....) | Create Account
Close category search window
 

Clock recovery and demultiplexing of high-speed OTDM signal through combined use of bismuth oxide nonlinear fiber and erbium-doped bismuth oxide fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ju Han Lee ; Res. Center for Adv. Sci. & Technol., Univ. of Tokyo, Japan ; Ohara, S. ; Nagashima, T. ; Hasegawa, T.
more authors

We explore the ultimate potential offered by state-of-the-art Bismuth oxide-based optical fiber technology in a high-speed optical phase-locked loop-based clock recovery subsystem for an optical time-division multiplexed (OTDM) signal, in which the use of optical fiber-based devices has been considered to be inappropriate due to its tight requirement of short optical loop length. Here, we experimentally demonstrate the implementation of a compact all-fiber-based OTDM receiver incorporating both clock recovery and demultiplexing functions by use of short lengths of Bismuth oxide-based nonlinear fiber and erbium-doped Bismuth oxide fiber. Successful clock recovery and subsequent error-free demultiplexing are readily achieved at a data rate of 80 Gb/s. The clock recovery subsystem is also shown to be operable at 160 Gb/s.

Published in:

Photonics Technology Letters, IEEE  (Volume:17 ,  Issue: 12 )

Date of Publication:

Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.