By Topic

Design and evaluation of human-machine communication for image information mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Daschiel ; Remote Sensing Technol. Inst., German Aerosp. Center, Oberpfaffenhofen, Germany ; M. Datcu

Very large volumes of heterogenous data, like multimedia, Earth observation images, scientific and engineering measurements, for instance, are continuously generated and stored. A typical case is the field of Earth observation. The widespread availability of high resolution images does not only explore the volumes of data, but also brings order at magnitude in the image detail, thus enormously increasing the information content. However, today's concepts and technologies are still limited in communicating the information content to people for use in real life applications. In this paper, we overview a new concept for knowledge-driven image information mining (KIM) and both analyze and evaluate it from the perspective of human-machine communication. The KIM concept enables the information communication from a very large image repository to users via the Internet. The communication is at a semantic level of representation and is adapted to the user's conjecture.

Published in:

IEEE Transactions on Multimedia  (Volume:7 ,  Issue: 6 )