By Topic

Mobility patterns in microcellular wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thajchayapong, S. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Peha, J.M.

This study investigates mobility patterns in microcellular wireless networks, based on measurements from the 802.11 based system that blankets the Carnegie Mellon University campus. We characterize the distribution of dwell time, which is the length of time that a mobile device remains in a cell until the next handoff, and sign-on interarrival time, which is the length of time between successive sign-ons from the same mobile device. Many researchers have assumed that these distributions are exponential, but our results based on empirical analysis show that dwell time and sign-on interarrival time can be accurately described using heavy-tailed arithmetic distributions that have infinite mean and variance. We also show that the number of handoffs per sign-on can be modeled accurately with a heavy-tailed distribution.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:5 ,  Issue: 1 )